Understanding Different Fire Protection Systems
Written by webtechs

Understanding Different Fire Protection Systems

Fire protection systems are designed to prevent, detect, control, and extinguish fires, helping to protect people, property, and assets. There are several types of fire protection systems, each with its specific purpose and application. Here’s a comprehensive breakdown of the various fire protection systems:

1. Fire Detection Systems

These systems are responsible for detecting the presence of a fire early, often before it becomes life-threatening. The main types are:

A. Smoke Detectors

  • Function: Detect smoke particles in the air.
  • Types:
    • Ionization Smoke Detectors: Best for detecting fast-burning fires.
    • Photoelectric Smoke Detectors: More sensitive to smoldering fires.
  • Application: Common in residential and commercial buildings.

B. Heat Detectors

  • Function: Trigger an alarm when a specific temperature is exceeded or when the rate of temperature increase is rapid.
  • Types:
    • Fixed Temperature Heat Detectors: Alarm when temperature reaches a set threshold.
    • Rate-of-Rise Heat Detectors: Alarm if temperature rises rapidly.
  • Application: Used in areas where smoke detectors are not suitable (e.g., kitchens, dusty areas).

C. Flame Detectors

  • Function: Detect the presence of a flame using sensors like infrared or ultraviolet.
  • Application: Industrial settings, especially where large machinery or flammable materials are present.

2. Fire Suppression Systems

Fire suppression systems are designed to control or extinguish fires once they have been detected. They can be categorized into the following types:

A. Water-Based Systems

  1. Sprinkler Systems
    • Function: Automatically activate when a fire is detected, spraying water over the affected area.
    • Types:
      • Wet Pipe Systems: Always filled with water, activate immediately when heat is detected.
      • Dry Pipe Systems: Filled with air or nitrogen; water is released only when the pipe is activated.
      • Pre-action Systems: A combination of dry and wet systems, requiring a second signal (such as smoke detection) to release water.
    • Application: Common in commercial buildings, offices, and warehouses.
  2. Deluge Systems
    • Function: Similar to sprinkler systems, but all sprinklers are open, and water is released simultaneously when activated.
    • Application: Used in high-risk areas with hazardous materials (e.g., chemical plants, power stations).

B. Non-Water-Based Systems

  1. Foam Systems
    • Function: Release foam to suppress fire by smothering the flames and preventing re-ignition.
    • Types:
      • Aqueous Film-Forming Foam (AFFF): Used for liquid fires.
      • Alcohol-Resistant Foam: Used for alcohol-based fires.
    • Application: Aircraft hangars, refineries, and fuel storage.
  2. Gaseous Fire Suppression Systems
    • Function: Release gas (often clean agent) to suppress fire without damaging sensitive equipment.
    • Types:
      • CO2 Systems: Use carbon dioxide to displace oxygen and smother fires.
      • Inert Gas Systems: Use gases like nitrogen or argon to reduce oxygen levels.
      • Clean Agent Systems (e.g., FM-200, NOVEC 1230): Use chemicals to suppress fire without harming the environment or sensitive electronics.
    • Application: Data centers, server rooms, electrical rooms.
  3. Dry Chemical Systems
    • Function: Release a dry chemical powder (e.g., monoammonium phosphate) to suppress fires by interrupting the chemical reaction.
    • Application: Industrial kitchens, warehouses, and vehicles.

3. Fire Extinguishers

Portable fire extinguishers are essential for containing small fires before they spread. They are classified based on the types of fires they can extinguish:

  1. Class A: For ordinary combustibles (wood, paper, cloth).
  2. Class B: For flammable liquids (gasoline, oils).
  3. Class C: For electrical fires.
  4. Class D: For combustible metals (magnesium, titanium).
  5. Class K: For cooking oils and fats (often used in commercial kitchens).

Types of Fire Extinguishers:

  • Water: Best for Class A fires.
  • Foam: Effective on Class A and B fires.
  • Dry Chemical: Suitable for Class A, B, and C fires.
  • CO2: Ideal for electrical fires (Class C) and some Class B fires.
  • Wet Chemical: Used in kitchens for Class K fires.

4. Fire Containment Systems

These systems prevent the spread of fire and smoke within a building.

A. Fire Doors

  • Function: Prevent the spread of fire and smoke between different areas of the building.
  • Types:
    • Fire-rated Doors: Constructed with fire-resistant materials, rated by the time they can withstand heat (e.g., 30, 60, or 90 minutes).
  • Application: Common in commercial buildings, hotels, and hospitals.

B. Fire Barriers

  • Function: Use walls, partitions, or other barriers to contain fire and smoke.
  • Application: Dividing large buildings into fire-safe zones.

5. Emergency Lighting and Signage

Emergency lighting and exit signage help guide people to safety during a fire.

  • Function: Illuminate exits and escape routes during power outages.
  • Application: All commercial buildings, particularly those with complex layouts.

6. Fire Alarm Systems

A fire alarm system detects fire or smoke and alerts building occupants. It typically includes:

  1. Control Panel: Central hub for fire alarm signals and response.
  2. Manual Pull Stations: For manually triggering the alarm in case of a fire.
  3. Audible and Visual Alarms: Provide notifications to building occupants.
  4. Monitoring Service: Some systems are connected to monitoring services that alert the fire department.

7. Fire Protection for Specific Hazards

In certain environments, specialized fire protection systems are necessary:

  • Kitchen Suppression Systems: For commercial kitchens, designed to handle grease fires (e.g., wet chemical suppression).
  • Electrical Fire Protection: Systems designed for high-voltage or sensitive electrical areas, often utilizing CO2 or clean agents.
  • Chemical Fire Protection: Foam or dry chemical systems are used in areas with flammable liquids or hazardous chemicals.

Choosing the Right Fire Protection System

  • Risk Assessment: Consider the type of business, occupancy, and fire hazards when choosing a system.
  • Local Regulations: Ensure compliance with local fire codes and regulations.
  • Maintenance: Regularly test and maintain all fire protection systems to ensure they are functional.

Conclusion

A comprehensive fire protection strategy involves a combination of detection, suppression, containment, and emergency response systems tailored to your specific needs. By understanding the different types of fire protection systems and their applications, you can select the best options to protect your people, property, and assets from the threat of fires.

 

Waterline Controls™

Our level sensors and controls aren’t just for use in residential potable water holding tanks; some of the other applications include cooling towers, sump pumps, wastewater, boilers, water storage tanks, and building fire protection water tanks.

blank
Written by webtechs

Developing a Commercial Fire Safety Plan

Creating a commercial fire safety plan is critical to protecting lives, property, and ensuring compliance with local regulations. Below is a step-by-step guide to developing an effective fire safety plan for your business:


1. Understand Local Fire Safety Regulations

  • Research Codes and Standards:
    • Refer to national standards such as the NFPA (National Fire Protection Association) codes.
    • Check local fire department regulations and building codes.
  • Obtain Permits:
    • Ensure the building complies with permits for occupancy and fire systems.

2. Assess Risks and Identify Hazards

  • Conduct a Fire Risk Assessment to:
    • Identify potential fire hazards (e.g., flammable materials, electrical systems).
    • Evaluate who is at risk (employees, visitors, contractors).
    • Assess existing fire safety measures and their adequacy.

3. Develop Fire Prevention Measures

  • Implement strategies to minimize fire risks:
    • Housekeeping: Keep work areas clean and clutter-free, especially around electrical equipment.
    • Storage: Store flammable materials safely in approved containers or cabinets.
    • Maintenance: Regularly inspect electrical systems, machinery, and fire safety equipment.
    • No Smoking Policies: Designate smoking areas far from flammable materials.

4. Design an Emergency Evacuation Plan

  • Evacuation Routes:
    • Mark clear, unobstructed pathways to exits.
    • Ensure exits are adequately lit and comply with local codes.
  • Assembly Points:
    • Designate safe locations for people to gather after evacuation.
  • Special Needs Planning:
    • Address evacuation for individuals with disabilities.

5. Install Fire Safety Equipment

  • Fire Alarms:
    • Install and regularly test fire alarm systems.
  • Fire Extinguishers:
    • Place extinguishers in accessible locations and train employees on their use.
    • Ensure different types (e.g., Class A, B, C, K) are available based on potential hazards.
  • Sprinkler Systems:
    • Install automated sprinkler systems in compliance with fire codes.
  • Emergency Lighting:
    • Equip the building with battery-powered lights for power outages.

6. Develop a Communication Plan

  • Alert Systems:
    • Use alarms, public address systems, or intercoms to alert occupants.
  • Contact Information:
    • Keep updated contact details for emergency services and key personnel.
  • Emergency Notifications:
    • Establish a process for informing employees, visitors, and authorities during a fire.

7. Train Employees and Conduct Drills

  • Fire Safety Training:
    • Teach employees about fire prevention, extinguisher use, and evacuation procedures.
  • Emergency Drills:
    • Conduct regular fire drills to test the evacuation plan and ensure readiness.
    • Include all shifts and departments in drills.

8. Assign Roles and Responsibilities

  • Fire Wardens:
    • Appoint individuals responsible for assisting with evacuations and ensuring everyone exits safely.
  • First Responders:
    • Train designated staff to handle minor incidents before emergency services arrive.
  • Record Keeper:
    • Assign someone to maintain fire safety documentation and records.

9. Maintain Documentation

  • Keep records of:
    • Fire risk assessments.
    • Inspection and maintenance schedules.
    • Training programs and attendance.
    • Incident reports and improvements made.

10. Regular Inspection and Updates

  • Schedule periodic checks of:
    • Fire alarms, extinguishers, and sprinkler systems.
    • Emergency lighting and exit signage.
  • Update the plan annually or after major changes in the workplace (e.g., renovations, staffing changes).

11. Submit the Plan for Approval

  • Share the fire safety plan with local fire authorities for review and approval if required.
  • Display the plan and evacuation routes prominently in common areas.

Template for a Commercial Fire Safety Plan

  1. Introduction:
    • Purpose and scope of the plan.
  2. Fire Risk Assessment:
    • Summary of identified risks.
  3. Emergency Response Plan:
    • Evacuation procedures, contact lists, and assembly points.
  4. Fire Prevention Measures:
    • Policies for housekeeping, storage, and equipment maintenance.
  5. Employee Training and Drills:
    • Description of training programs and drill schedules.
  6. Fire Safety Equipment:
    • List of systems and their maintenance schedules.
  7. Roles and Responsibilities:
    • Assigned personnel and their duties.
  8. Inspection and Maintenance Records:
    • Documentation of safety checks and compliance efforts.

By following these steps, you can ensure your commercial fire safety plan is comprehensive, effective, and compliant with legal requirements, providing a safer environment for everyone in your facility.

Our level sensors and controls aren’t just for use in residential potable water holding tanks; some of the other applications include cooling towers, sump pumps, wastewater, boilers, water storage tanks, and building fire protection water tanks.

Are Sprinklers Worth It?
Written by webtechs

Are Sprinklers Worth It?

Installing sprinkler systems is generally considered worth it for several reasons, particularly in commercial buildings where fire safety, property protection, and compliance with regulations are paramount. Below are some key benefits that demonstrate why sprinkler systems are a valuable investment:

1. Improved Fire Safety

  • Quick Response: Sprinkler systems activate automatically in response to heat, allowing them to control or suppress fires before they grow large. This quick response time significantly improves safety for building occupants by reducing the spread of fire and providing more time for evacuation.
  • Life-Saving Potential: According to the National Fire Protection Association (NFPA), the risk of death in a fire is significantly reduced in buildings with sprinkler systems. Sprinklers help contain fires early, limiting exposure to smoke, heat, and toxic gases.

2. Reduced Property Damage

  • Containment of Fire Damage: Sprinklers limit the spread of fires, meaning that only the affected area is exposed to water, heat, and smoke. This containment drastically reduces the damage to property, machinery, equipment, and building infrastructure.
  • Lower Repair and Recovery Costs: By limiting fire damage, businesses can reduce the costs associated with repairs, lost inventory, and downtime. In many cases, a sprinkler system will result in only localized damage, which can be cleaned up or repaired quickly, enabling a faster return to normal operations.

3. Compliance with Fire Codes and Insurance Requirements

  • Legal Compliance: Many local building codes and fire safety regulations mandate the installation of sprinkler systems in commercial properties, especially for larger or higher-risk buildings. Failing to comply with these regulations can result in fines, penalties, and even the closure of the business.
  • Lower Insurance Premiums: Insurance companies often offer lower premiums for commercial buildings equipped with sprinkler systems. This is because the presence of a sprinkler system reduces the overall risk of fire-related claims, making it a cost-saving investment over time.

4. Long-Term Cost Efficiency

  • Lower Fire Suppression Costs: While installing a sprinkler system may involve upfront costs, the long-term financial benefits often outweigh the initial investment. Fire suppression without sprinklers can be far more costly, involving large-scale emergency responses and extensive repairs.
  • Potential for Tax Benefits: In some jurisdictions, installing fire safety systems like sprinklers can qualify a business for tax deductions or credits, further reducing the financial burden of installation.

5. Minimal Water Damage

  • Targeted Response: Contrary to popular belief, sprinklers do not activate all at once across the entire building. Only the sprinklers closest to the fire will activate, which reduces the amount of water used and minimizes water damage.
  • Less Damage Compared to Fire Hoses: Sprinklers use less water compared to firefighting hoses. Firefighters typically use large volumes of water to extinguish fires, which can cause more extensive water damage. A sprinkler system can stop the fire early, using just enough water to control it.

6. Business Continuity

  • Minimized Downtime: By quickly controlling fires and limiting damage, businesses with sprinkler systems can often resume operations faster than those without. This means fewer disruptions to productivity and reduced financial losses.
  • Preservation of Assets: Sprinklers help protect valuable assets such as machinery, inventory, and data, which can be critical to business survival after a fire.

7. Protection of High-Risk and Special-Use Areas

  • In high-risk industries like manufacturing, warehouses, and chemical plants, the potential fire hazards are greater, and the consequences of fire can be catastrophic. Installing specialized sprinkler systems (such as foam or deluge systems) tailored to specific fire risks can prevent widespread destruction.

8. Environmental Impact

  • Less Pollution: Fire damage results in the release of harmful pollutants, both in the form of smoke and destroyed materials. By controlling the fire at an early stage, sprinklers reduce the environmental damage caused by fire.
  • Water Efficiency: Sprinklers are far more water-efficient than large-scale firefighting efforts. They use a targeted approach that limits the amount of water needed to control a fire.

Weighing the Costs

Initial Investment

  • Installing a sprinkler system can be costly, depending on the size of the building, the type of system required, and the building’s fire risk profile. However, this upfront cost is often offset by lower insurance premiums, reduced potential for fire damage, and quicker recovery from fire incidents.

Maintenance Costs

  • Sprinkler systems require periodic maintenance and inspections to ensure they are in proper working order. These costs are generally minimal when compared to the potential cost of fire damage in buildings without sprinkler systems.

When Might Sprinklers Be Less Worthwhile?

  • Low Fire Risk Areas: In some low-risk environments, such as small, single-story buildings with minimal fire hazards, the need for a sprinkler system may not be as critical. However, even in these cases, the added safety can still provide peace of mind and legal compliance.
  • Older Buildings: Retrofitting older buildings with sprinkler systems can be more expensive due to necessary structural changes. However, many building owners still choose to install them to enhance safety and meet modern fire codes.

Conclusion: Are Sprinklers Worth It?

Overall, sprinkler systems are absolutely worth the investment for most commercial properties. The enhanced fire protection, reduced property damage, increased safety for occupants, and potential cost savings (both from reduced insurance premiums and faster recovery from fire) make them a crucial part of modern fire safety. Additionally, compliance with fire codes and the potential for minimizing business disruptions further support the value of sprinkler systems in commercial environments.

Waterline Controls™

Our level sensors and controls aren’t just for use in residential potable water holding tanks; some of the other applications include cooling towers, sump pumps, wastewater, boilers, water storage tanks, and building fire protection water tanks.

History of Water Level Sensors
Written by webtechs

History of Water Level Sensors

Water level sensors have a long history dating back to ancient times when simple devices were used to measure water levels for irrigation and flood control. Over the centuries, advancements in technology have led to the development of more sophisticated water level sensing devices for various applications. Here’s a brief overview of the history of water level sensors:

  1. Ancient Water Level Measurement: The earliest water level measurement devices were simple float-based mechanisms used by ancient civilizations for irrigation and flood control. These devices typically consisted of a float attached to a lever or rod, which would rise and fall with the water level, indicating the depth.
  2. Early Mechanical Water Level Gauges: In the 17th and 18th centuries, mechanical water level gauges were developed for use in wells, reservoirs, and other water storage systems. These gauges often used a float connected to a chain or pulley system to measure the water level.
  3. Development of Electrical Sensors: The invention of electrical conductivity and capacitance sensors in the 19th century paved the way for more accurate and reliable water level measurement devices. These sensors could detect changes in water level by measuring changes in electrical properties such as conductivity or capacitance.
  4. Ultrasonic and Radar Sensors: In the mid-20th century, ultrasonic and radar-based water level sensors were developed, offering non-contact measurement capabilities. These sensors emit sound or radio waves that bounce off the water surface and are then detected to determine the water level.
  5. Pressure Transducers: Pressure transducers, which measure water level based on the pressure exerted by the water column, were also developed in the 20th century. These sensors are commonly used in applications such as groundwater monitoring, sewage systems, and industrial tanks.
  6. Modern Sensor Technologies: In recent decades, advancements in microelectronics and sensor technologies have led to the development of highly accurate and versatile water level sensors. These sensors often use a combination of different measurement principles, such as ultrasonic, pressure, capacitance, or optical sensing, to provide precise and reliable water level measurements in various environments.
  7. Wireless and IoT Integration: With the rise of wireless communication and Internet of Things (IoT) technologies, water level sensors can now be easily integrated into remote monitoring and control systems. These systems allow for real-time monitoring of water levels and automated alerts or actions based on predefined thresholds.

Today, water level sensors are widely used in various applications, including environmental monitoring, flood warning systems, water resource management, wastewater treatment, agriculture, aquaculture, and industrial process control. Continued advancements in sensor technology are expected to further enhance the accuracy, reliability, and functionality of water level sensing devices in the future.

Our level sensors and controls aren’t just for use in residential potable water holding tanks; some of the other applications include cooling towers, sump pumps, wastewater, boilers, water storage tanks, and building fire protection water tanks.

Are Sprinklers Worth It?
Written by webtechs

Are Commercial Building Sprinkler Systems Mandatory?

Fire safety is highly important for owners and managers of commercial buildings. A fire in a commercial establishment could lead to serious injury or even death of employees and customers. Read on to learn more about sprinkler systems.

he requirement for commercial building sprinkler systems is typically governed by local building codes and regulations. Building codes are laws or regulations set by local authorities to ensure the safety, health, and general welfare of the public. The specific requirements for sprinkler systems in commercial buildings can vary significantly based on factors such as building size, occupancy type, and local jurisdiction.

In many places, especially in developed countries, building codes often mandate the installation of fire sprinkler systems in commercial buildings. The inclusion of sprinkler systems is generally aimed at providing a reliable and effective means of fire protection, minimizing the risk of fire-related injuries and property damage. Key points regarding commercial building sprinkler systems include:

  1. Occupancy Type:
    • The occupancy type of the commercial building is a crucial factor in determining whether sprinkler systems are required. For example, high-occupancy buildings like hotels, hospitals, schools, and large office buildings may have more stringent requirements.
  2. Building Size and Height:
    • The size and height of the building can influence the need for sprinkler systems. Taller buildings or those with larger floor areas may be subject to more stringent fire safety requirements.
  3. Building Codes and Regulations:
    • Each jurisdiction has its own building codes and regulations, and these codes are periodically updated. Local authorities adopt specific editions of building codes, and compliance with the codes in effect at the time of construction or renovation is typically required.
  4. International Building Code (IBC):
    • In the United States, the International Building Code (IBC) is widely adopted by many states and local jurisdictions. The IBC provides guidelines and requirements for fire protection, including the installation of sprinkler systems.
  5. Life Safety and Property Protection:
    • Sprinkler systems are considered a critical component of life safety and property protection. They are designed to control or suppress fires until the arrival of the fire department, helping to prevent the rapid spread of flames.
  6. Insurance Requirements:
    • Insurance companies may also influence the decision to install sprinkler systems. Some insurance policies offer discounts for properties equipped with fire sprinklers due to the reduced risk of significant fire damage.

It’s important for property owners, developers, and contractors to work closely with local building officials and fire authorities to understand and comply with specific sprinkler system requirements in their jurisdiction. Failure to adhere to these requirements can result in regulatory penalties and may impact the occupancy permit for the building.

As building codes and regulations are subject to change, it’s advisable to consult with local authorities or a qualified fire protection professional to ensure accurate and up-to-date information regarding the installation of sprinkler systems in commercial buildings.

Waterline Controls™

Our level sensors and controls aren’t just for use in residential potable water holding tanks; some of the other applications include cooling towers, sump pumps, wastewater, boilers, water storage tanks, and building fire protection water tanks.

Are Sprinklers Worth It?
Written by webtechs

What Is A Fire Safety Plan?

Read on to learn some of the elements you need to have in place as part of a fire safety plan.

A fire safety plan is a comprehensive set of procedures and measures designed to prevent fires, ensure the safety of individuals in case of a fire emergency, and minimize property damage. It outlines the steps to be taken in preventing fires, as well as the actions to be followed in the event of a fire outbreak.

  • The appointment and organization of designated supervisory staff by position, with related duties and responsibilities during an emergency.
  • Instructions for building occupants and staff on fire prevention methods and what to do in case of fire.
  • The method of training supervisory staff for fire emergencies.
  • The method and frequency of conducting fire drills.
  • The control of fire hazards throughout the building.
  • Detailed maintenance procedures for fire protection systems and building facilities.
  • The identification of alternate fire safety measures in the event of a temporary shutdown of fire protection equipment or systems so that occupant safety can be maximized.
  • Floor plans that feature the type, location and operation of fire protection systems, access for firefighting and all exit facilities.
  • Detailed instructions for supervisory staff on the use of any emergency equipment, such as the voice communication system, the fire alarm system, smoke control system or emergency power supply system.
  • Procedures for the use of elevators and the evacuation of building occupants requiring special assistance.
  • Established procedures for assisting the fire department in accessing the building and locating the fire. For large facilities, it is recommended that floor plans showing exit locations be posted on each floor.
  • An Accountability System that can account for all building occupants following an evacuation, including notification to the fire department of any missing occupants and their last known location.

A typical fire safety plan includes the following components:

Fire Prevention Measures: This section covers measures to reduce the risk of fire, such as proper storage and handling of flammable materials, regular maintenance of electrical systems, and ensuring smoking regulations are followed.

Emergency Notification: The plan should outline how to alert occupants and authorities in the event of a fire, including procedures for activating fire alarms and notifying emergency services.

Evacuation Procedures: This section details the steps to be taken when a fire occurs, including evacuation routes, assembly points, and procedures for assisting people with disabilities or special needs. It may also include guidelines for conducting fire drills to ensure everyone is familiar with the evacuation process.

Firefighting Equipment: The plan should specify the location and proper use of fire extinguishers, fire hoses, sprinkler systems, and any other firefighting equipment available on the premises.

Responsibilities and Roles: It is important to assign responsibilities to designated personnel, such as fire wardens or marshals, who will coordinate the evacuation process and ensure everyone is accounted for.

Training and Education: Regular training sessions should be conducted to educate occupants about fire safety procedures, including how to use firefighting equipment and respond appropriately during a fire emergency.

Building Information: The plan should include detailed information about the building’s layout, including floor plans, exits, stairwells, and utility shut-off points. This information aids firefighters in locating and controlling the fire.

Regular Plan Review: Fire safety plans should be reviewed and updated periodically to ensure they remain current and effective. Changes in building occupancy, layout, or fire safety regulations may require updates to the plan.

By implementing and regularly reviewing a fire safety plan, individuals and organizations can enhance the safety of occupants, reduce the risk of fire incidents, and be better prepared to respond effectively in case of emergencies.

Waterline Controls™

Our level sensors and controls aren’t just for use in residential potable water holding tanks; some of the other applications include cooling towers, sump pumps, wastewater, boilers, water storage tanks, and building fire protection water tanks.

blank
Written by webtechs

Types of Automation for Oilfield Water Management

Automation Oil & Gas Sustainability & ESG Water & Wastewater Oilfield Waterfield engineer water wastewater pipeline valve control It’s a good time to be an oilfield water services company. Oil prices have stabilized above $100/bbl, the US rig count is the highest it’s been since pre-pandemic times, and the combination of domestic water shortages and ESG fund growth places a premium on sustainable water use.

All together, oil & gas producers are willing to pay a premium for quality oilfield water management services so they can continue to ramp drilling programs using recycled and reused produced and flowback water.

As the market for oilfield water services grows, so too does competition. Despite the labor shortage, the oilfield water services market is growing, with water management stalwarts such as Select Energy Services (7%), Oilfield Water Logistics (25%), DHI (22%), and Breakwater (20%) showing strong headcount growth over the last 2 years. Nearly every week it seems a new water transfer or water midstream company pops up.

Rising competition means established companies and newcomers alike will be looking for an edge to outpace their competition. In our last blog, we discussed why we think that automation is a great way for oilfield water management companies to differentiate. In this one, we want to talk more about what we mean by “automation,” breaking the idea down into 3 core categories.

The 3 categories of automation are:

  • Remote Monitoring
  • Remote Control
  • Autonomous Operations

Let’s talk about what each is, and the benefits it offers for oilfield water services companies.

Remote Monitoring for Oilfield Water Services

As the name implies, remote monitoring is a concept that involves using sensors and transmitters to relay up-to-date operational information back to human operators to enable oversight from a distance.

In oilfield water management applications, this usually looks like installing wireless level, temperature, pressure, and flow sensors and transmitting the data they create via long-range wireless networks like cellular or satellite. Once transmitted, data is visualized in software tools that helps operators prioritize their operations. In certain cases, operators may also remotely monitor existing PLCs or RTUs that are connected to equipment like pumps or compressors.

In simple terms, Remote Monitoring connects assets to people, regardless of the distance between them.

Remote monitoring has many safety, sustainability, and efficiency benefits. It allows oilfield water service technicians to avoid higher-risk behaviors and windshield time, and it generally decreases the time to insight by getting information in front of operators more quickly. Furthermore, remote monitoring can enable water transfer and treatment companies to share information with their customers in real-time.

Of course, Remote Monitoring only provides information to operators. It’s what they do with that information that matters, which leads us to the next level of automation.

Remote Control

Remote Control reverses the flow of information created by Remote Monitoring. Instead of connecting assets up to people, Remote Control connects people back to their assets, giving them the ability to actuate changes in real-time whether they are 100 feet or 100 miles from the asset.

In oilfield water applications, Remote Control generally looks like connecting equipment controls –  such as relays, VSDs, or stepping actuators – to a remote connectivity network such as cellular or SCADA. Operators then use software to send commands to these equipment controls, actuating changes.

The benefits of Remote Control essentially “double up” on the benefits of Remote Monitoring by completing the trip back to the asset and offering the same safety, sustainability, and efficiency benefits. 

With Remote Monitoring and Remote Control, there is always a human in the loop. The human applies their experience and logic to infer necessary actions from Remote Monitoring systems and, in some cases, take those actions via Remote Control systems.

In many cases, humans should be in the loop. But in others, it can be beneficial to take humans out of the loop, which takes us to the next and final level of automation.

Autonomous Operations

Autonomous Operations involve both Monitoring & Control, but instead of human logic placed between them, we instead insert machine logic.

Certain operational tasks are highly repeatable, and the logic to complete them is routine and well-understood. In this case, Autonomous Operations can be used to connect insights to actions more quickly.

In oilfield water management applications, Autonomous Operations generally looks like connecting those things we are remotely monitoring, like pressure, temperature, level, and flow, to those things we are remotely controlling, like pumps and valves. In between these things we used algorithms and logic to determine how and when changes are made.

Of course, when implementing Autonomous Operations, it’s always a good idea to include oversight. This brings us full circle, back to Remote Monitoring & Control. By adding remote monitoring characteristics, such as alarming, to Autonomous Operations, we can determine if the machine logic has failed to achieve the desired state. Furthermore, we can take action through emergency shutdowns, to stop unsafe autonomous operations.

Is automation right for you?

There are many more examples of how Remote Monitoring, Remote Control, and Autonomous Operations can be applied in oilfield water services. Not every application will require any or all of these types of automation. Still, oilfield water companies look to carve out more efficiency, drive sustainability programs, or improve safety numbers will benefit from adding automation in certain cases.

Choose the type of automation that provides the most benefit. In many cases, Remote Monitoring serves as a great starting point, opening up opportunities to discover where the higher “levels” of automation can provide benefit.

Source

https://blog.wellaware.us/blog/the-three-types-of-automation-for-oilfield-water-management

Waterline Controls™

Our level sensors and controls aren’t just for use in residential potable water holding tanks; some of the other applications include cooling towers, sump pumps, wastewater, boilers, water storage tanks, and building fire protection water tanks.

Are Sprinklers Worth It?
Written by webtechs

Flow Measurement

Flow measurement is the quantification of bulk fluid movement. Flow can be measured in a variety of ways. The common types of flowmeters with industrial applications are listed below:

 

  1. a) Obstruction type (differential pressure or variable area)
  2. b) Inferential (turbine type)
  3. c) Electromagnetic
  4. d) Positive-displacement flowmeters, which accumulate a fixed volume of fluid and then count the number of times the volume is filled to measure flow.
  5. e) Fluid dynamic (vortex shedding)
  6. f) Anemometer
  7. g) Ultrasonic
  8. h) Mass flowmeter (Coriolis force).

Flow measurement methods other than positive-displacement flowmeters rely on forces produced by the flowing stream as it overcomes a known constriction, to indirectly calculate flow. Flow may be measured by measuring the velocity of fluid over a known area. For very large flows, tracer methods may be used to deduce the flow rate from the change in concentration of a dye or radioisotope.

Water metering

Water metering is the practice of measuring water use. Water meters measure the volume of water used by residential and commercial building units that are supplied with water by a public water supply system. They are also used to determine flow through a particular portion of the system.

In most of the world water meters are calibrated in cubic metres (m3) or litres,[1] but in the United States and some other countries water meters are calibrated in cubic feet (ft.3) or US gallons on a mechanical or electronic register. Modern meters typically can display rate-of-flow in addition to total volume.

Several types of water meters are in common use, and may be characterized by the flow measurement method, the type of end-user, the required flow rates, and accuracy requirements.

Waterline Controls™

Our level sensors and controls aren’t just for use in residential potable water holding tanks; some of the other applications include cooling towers, sump pumps, wastewater, boilers, water storage tanks, and building fire protection water tanks.

Are Sprinklers Worth It?
Written by webtechs

Fire Water Systems

A fire sprinkler system is an active fire protection method, consisting of a water supply system, providing adequate pressure and flowrate to a water distribution piping system, onto which fire sprinklers are connected. Although historically only used in factories and large commercial buildings, systems for homes and small buildings are now available at a cost-effective price. Fire sprinkler systems are extensively used worldwide, with over 40 million sprinkler heads fitted each year. In buildings completely protected by fire sprinkler systems, over 96% of fires were controlled by fire sprinklers alone.

A firewater system generally has four main sections:

1. A supply of firewater. This can come from storage tanks, a firewater lagoon, or a natural body of water such as the sea or a lake or river.

2.A pumping system that provides a sufficient flow of water to extinguish the fire.

3.A header network of pipes, often in the form of a ring main that transfers the water from the pumps to the fire.

4.Hydrants, nozzles, sprinklers, or other local devices for directing the firewater to the location of the emergency.

Source 

https://en.wikipedia.org/wiki/Fire_sprinkler_system

Waterline Controls™

Our level sensors and controls aren’t just for use in residential potable water holding tanks; some of the other applications include cooling towers, sump pumps, wastewater, boilers, water storage tanks, and building fire protection water tanks.

Why Do Sump Pump Float Switches Fail?
Written by webtechs

Water Management in Intelligent Buildings and IoT

Intelligent buildings are the culmination of technological advancements that enable cost containment, efficiency, sustainability, and occupant satisfaction through system optimization. While solutions for intelligent buildings have traditionally been positioned to promote energy efficiency, as the market matures, vendors are emphasizing broader benefits. One such benefit is the conservation and management of water, which is becoming an increasingly important issue in commercial buildings. Advocates have long struggled to increase widespread investment in water-saving technologies and the adoption of intelligent building solutions.

Sensor technology and Internet of Things (IoT) devices are becoming more prevalent in commercial building management. This intelligent building management technology provides building owners and occupants with real-time data that can be used to drive or automate decisions, resulting in cost savings and resource conservation.

For example, the growing trend of remote, telecommuting office workers can be addressed through occupancy sensors that detect the presence or absence of employees in work areas, ensuring that the building is lit, cooled, or heated only when necessary. According to a recent study, smart technologies can help the average office building save 18% of its energy consumption. 1

Several of these systems can also take into account tenant or office worker feedback. Comfy, a smart workplace phone or computer app, collects user preferences for workplace temperature settings, aggregates the data, and then instructs the building’s smart energy system to adjust temperatures automatically to maintain a comfortable working environment.

Why is Smart Water Management Gaining Traction?

While the primary focus of IoT devices in smart building management has been on energy savings, their ability to save water is gaining traction. Ecova found that 57% of energy, facility, finance, and sustainability managers had invested in water conservation measures in 2016. Water conservation efforts, such as irrigation controls and behavioral change, were viewed as low- or no-cost priorities by the surveyed group. 2

Today’s investments in smart water management are simple to implement and quickly pay for themselves.

By 2025, the water management technology market is expected to reach $2.8 billion.

Following irrigation, the next step is to integrate smart water technologies into facility management, which is the direction in which the industry is headed, according to a Navigant Research report.

Trends in Intelligent Water Management

Global investment in water management technologies and services is expected to double to $2.8 billion by 2025, the report states, as water management becomes a standard component of smart buildings. As corporate sustainability and energy efficiency become more important, vendors of smart building technology are demonstrating more comprehensive tools, including some designed specifically for water conservation and management.

Significant corporations are under increased pressure from shareholders and customers to demonstrate sustainability action. Customers are seizing the opportunity to manage their water consumption through targeted actions that make economic sense, as the bottom line remains the primary driver of business investment today. Three emerging technology areas are water-efficient plumbing, irrigation management, and monitoring software.

Manage Facility Water Use Effectively Using Smart Water Management Technology

Smart water management technology provides the data and tools necessary to manage water use more effectively. The data collected by smart water devices is integrated with building management systems to demonstrate how much water is being used and to identify areas where water can be used more efficiently.

Here are some ways that HydroPoint’s smart water management tools can assist you in reducing water waste:

Integrated dashboards that display real-time water use data assist you in adhering to water restrictions or budgets for outdoor irrigation.

Water leaks, large and small, indoors and outdoors, can be detected and reported 24 hours a day with 24-hour water usage monitoring and reporting. Alerts can be sent to a computer or a mobile device in the event of a leak.

Automated irrigation schedules based on weather or soil moisture data promote plant health and prevent overwatering landscapes, resulting in decreased plant loss, hardscape damage, common area hazards, and stormwater runoff.

Controlling the system remotely via computer or mobile device eliminates the need for site visits and wet checks.

Sustainability, as well as corporate commitment to intelligent buildings, are significant drivers for early movers in the water management market. However, a lack of regulation and a disparity between the true cost of water and its price are two impediments to water conservation and management. Investment in three segments of water management—software and services, water-efficient plumbing, and irrigation management—provides economic and environmental benefits, but adoption rates and scale vary significantly by region and customer sector. Global investment in water management solutions is expected to increase from $2,007.9 million in 2016 to $2,862.3 million in 2025, according to Navigant Research.

This Navigant Research report examines the opportunities and challenges associated with deploying water management technologies and services in intelligent buildings. The study investigates the major market dynamics influencing water management solution adoption at the macro level, as well as by customer sector (building type) and region. Revenue forecasts for the global market are provided through 2025, segmented by customer sector, technology segment, and region. Additionally, the report examines key water management technologies for intelligent buildings, as well as the competitive landscape.

Significant Issues Addressed:

  • What is motivating interest in intelligent building water management?
  • Which of the following are the primary impediments to investing in intelligent building water management?
  • What are the advantages of intelligent building water management?
  • Which customer segments stand to gain the most from intelligent building water management?
  • Which technology segments in the intelligent building water management market will experience the fastest growth?
  • Which water management solutions are gaining the most traction?

Waterline Controls™

Our level sensors and controls aren’t just for use in residential potable water holding tanks; some of the other applications include cooling towers, sump pumps, wastewater, boilers, water storage tanks, and building fire protection water tanks.

1 2 3